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Kramers® Fokker-Planck model for activated rate processes (noise-induced escape over a potential-
energy barrier) is solved without recourse to any microscopic theory (Grabert [Phys. Rev. Lett. 61, 1683
(1988)]) or associated Langevin equations (Graham [J. Stat. Phys. 60, 675 (1990)]). The independence of
the microscopy of Grabert’s original result for the escape rate is thereby definitely proven and clarified.
Throughout, the analysis is systematic in a small parameter and provides a unified treatment of both
weak and strong friction, including the turnover regime. Inter alia we introduce some novel theoretical
concepts, such as a constrained Gaussian transformation and a dynamical extension of phase space.

Finite-barrier corrections are also investigated.

PACS number(s): 02.50.—r, 05.40.+j, 82.20.—w

L. INTRODUCTION

The notion of noise-activated rate processes dates back
to the work of van’t Hoff [1] and Arrhenius [2] concern-
ing chemical reactions. A most important feature in
these early calculations of reaction rates was the assump-
tion of perfect thermal equilibrium at the transition state
(i.e., at the top of the energy barrier which separates one
metastable chemical complex from another). However,
the very existence of a nonequilibrium reaction process
ipso facto implies deviations from the exact Boltzmann
distribution. A second pivotal element in the early
theory was the assumption of the absence of transition-
state (or barrier) recrossings. Both assumptions taken to-
gether provide the framework for standard transition-
state theory (TST) [3].

Standard TST is a purely kinetic theory. Its basic in-
gredient is mere equilibrium statistical mechanics. As
such it does not allow evaluation of barrier recrossings,
which are due to the dynamical coupling of the reactive
complex to its environment (e.g., a solvent, or solid-state
matrix). In a classic paper [4] Kramers investigated the
significance of TST by modeling the escape over the bar-
rier as the dynamics of a Brownian “particle.” The parti-
cle moves along the reaction coordinate in a bistable po-
tential U(x). The fluctuations arise from the coupling to
a thermal environment (or heat bath). Indeed, Kramers
showed that the activated reaction process should stop if
the coupling to the heat bath goes to zero. Remarkably,
this result was not widely appreciated until recently [5,6].

Since in the zero-coupling limit the total mechanical
energy of the particle becomes a conserved (i.e., slow)
quantity, this case is most easily understood in terms of
energy diffusion (around a deterministic trajectory). As a
result the exponential prefactor (or attempt rate v,) in
the general expression for the escape rate
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I'=v,exp(—BU,) , (1.1)

takes on the particular value v,(A—0)=2ABI,w,/2m7.
Here U, is the barrier height, I, = ¢ p dx is the action in-

tegral of classical mechanics (for a round trip through the
well at the barrier peak energy E =0), 2A is the friction
coefficient, w, is the harmonic frequency at the potential
minimum, and B=1/kzT. Notice that 2AI, represents
the energy loss per round trip. For the cubic and quartic
model potentials [see below (2.1)], one has I, =36U, /5w,
and I,=16U, /3w,, respectively, where w, is the har-
monic (curvature) frequency at the barrier. The above re-
sult for v, requires that 2ABI, <<1. In this regime the
suppression of the rate relative to the standard TST value
v, =wy/2m is due to the deviations mentioned earlier (de-
pletion at E =0) from the exact Boltzmann equilibrium
distribution.

Elaborating on Kramers’ weak-damping analysis, de-
pletion effects were calculated in detail by Biittiker,
Harris, and Landauer [7], and by Mel’'nikov and Mesh-
kov [8]. The latter two-dimensional theory contains the
former as a one-dimensional approximation [9]. In both
cases, the rate monotonically tends to the simple TST re-
sult upon increasing the friction (which is incorrect, as
will be discussed below). Extensions along these lines in
order to include quantum-mechanical tunneling effects
have been given, for example, in Refs. [10-13].

If the coupling to the heat bath becomes very strong
(i.e., not only 2ABI, >>1, but also A/w, >>1), the reac-
tion rate again tends to zero. In this case the motion of
the particle itself becomes slow, and the activation pro-
cess reduces to Smoluchovsky diffusion along the reac-
tion coordinate [14]. This leads to the relation
Vo(A— 0 )=wyw, /2mA. Here the reduction of the rate
relative to the standard TST value is caused by diffusive
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returns of particles across the barrier peak, which makes
the original transition state imperfectly absorbing (and,
hence, its notion moot). Kramers showed that for lower
(i.e., moderate-to-strong) friction values, the Smoluchov-
sky result generalizes to v, =kw, /2, where

k=[1+(Aw, 1" — A/, . (1.2)

Note that this rate monotonically tends to the simple
transition-state value upon decreasing the friction (which
is incorrect, as has been discussed above). As with the
weak-damping result, generalizations of Kramers’ result
for moderate-to-strong damping in order to include
quantum-mechanical tunneling effects have been dis-
cussed, e.g., in Refs. [12,15,16]. For a review, see Ref.
[17].

Clearly, Kramers’ original analysis and its simple ex-
tensions do not provide a single, unified description for
all values of the friction. This is so in particular for those
intermediate values where the actual rate reaches a max-
imum, i.e., where the physics changes from energy
diffusion (depletion) to spatial diffusion (recrossings).
This is known as the Kramers turnover problem. During
the last decade several attempts have been made to pro-
vide formulas bridging the two Kramers limits (see, for
example, Refs. [7-9,12,18,19]). On the one hand, these
approaches were all based on Kramers’ classical stochas-
tic process. On the other hand, however, none of
them—apart from Ref. [9] and a recent article by
Mel'nikov [20]—involved a unified picture of the reac-
tion dynamics. As a consequence, the predictions for the
turnover region varied considerably [21].

Meanwhile [22,23] the dynamical significance of the
factor « as given in (1.2) had been pointed out (in the con-
text of generalizing Kramers’ strong-coupling theory to
include memory friction). In particular, Pollak [23]
showed that kw, is the eigenfrequency of the only unsta-
ble normal mode of the Zwanzig Hamiltonian [24] near
the barrier peak (see also, for example, Refs. [25-27]).
This Hamiltonian models the motion of a particle which
is bilinearly coupled (via an interaction term x 3, c.x;)
to a harmonic environment (with degrees of freedom x,
and frequencies w; ). For an Ohmic environment this mi-
croscopic model indeed implies Kramers’ stochastic pro-
cess. However, the reverse statement does not hold.

Elaborating on Pollak’s work, Grabert [28] pioneered a
unified treatment of Kramers turnover problem on the
basis of the Zwanzig Hamiltonian (see also Ref. [29]).
The connection of the multidimensional TST of Pollak
(leading to a spatial-diffusion-limited rate) with the
weak-coupling theory of Mel’'nikov and Meshkov [8] is
possible upon introducing the energy E of the unstable
barrier mode (in lieu of the particle energy E,). Of
course, the energy E is a collective variable involving
both the particle and the microscopic environmental de-
grees of freedom.

The theory of Pollak, Grabert, and Hanggi [29] clearly
leaves us with a challenge [9,30,31]. Namely, from the
work of Refs. [28,29] the impression emerges that—in
order to solve the turnover problem—one has to resort
necessarily to a microscopic model. However, all in-
gredients for the description of the original stochastic
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process are fully contained in Kramers’ two-dimensional
Fokker-Planck equation [4], which is completely specified
in terms of the particle’s mechanical degrees of freedom
(i.e., x and p=mx). So far it has remained unclear how
one should introduce the unstable-mode energy E (which
appears to play such a crucial role in the high-
dimensional microscopic analysis) within the context of
the low-dimensional macroscopic Fokker-Planck model
per se.

The Zwanzig model Hamiltonian defines a Langevin
dynamics in the particle subspace [25,27,29]. The
Langevin noise arises from the environmental degrees of
freedom. Recalling that the unstable mode is a mixture
of particle and bath variables, Graham formulated a
theory of activated decay (including the turnover region)
on the basis of the Langevin equation associated with
Kramers’ Fokker-Planck equation, by mixing particle
and noise variables [31]. Obviously, Graham’s theory
only partially meets the challenge formulated above.

In the present article the challenge will be fully met. A
turnover theory similar to Grabert’s will be given, based
solely on Kramers’ Fokker-Planck equation for the
phase-space density P(x,p). No recourse to a microscop-
ic model or Langevin dynamics will be made. Apart
from the unstable-mode energy, the analysis requires the
introduction of some new theoretical concepts (such as a
constrained Gaussian transformation and a dynamical ex-
tension of phase space).

In Sec. II the separatrix of the particle motion near a
parabolic barrier is investigated. The stable and unstable
direction at the saddle point are used to define a transfor-
mation from (x,p) to (9,{). Generalizing an earlier idea
[32,33], the noise along the unstable coordinate 7 is elim-
inated in Sec. III by means of a Gaussian integral trans-
formation. A constraint takes care of preserving the
dynamical significance of the potential U(x) under this
mapping. In Sec. IV phase space is extended by a new
coordinate ¢. The (stable) dynamics along 4 is defined
such that upon transforming from (4, 7,§) to new coordi-
nates (u,v,w) the pair (u,v =u) represents the unstable
barrier mode. This mode is completely deterministic in
the barrier region. Outside this region it couples to the
original environment only in an indirect manner (via the
w mode), which allows the definition of the unstable-
mode energy E. The full equilibrium distribution in ex-
tended phase space is shown to be Boltzmannian (in
terms of E) in Sec. V. Its normalization is discussed in
Appendix A. The existence of a quasiequilibrium (meta-
stable) distribution like that of Kramers—but now
without barrier recrossings—is also shown, which allows
a calculation of the Kramers-Smoluchowsky escape rate
by means of TST (which constitutes the low-dimensional
version of Pollak’s theory for moderate-to-strong friction
[23]). Finite-barrier corrections are considered in a sys-
tematic analysis in Appendix B. Section VI contains a
systematic analysis of the quasiequilibrium state
R (u,v,w) in extended phase space in the weak-friction re-
gime. Introducing a fictitious time variable, a “‘system-
size”-type [14] expansion of the Fokker-Planck equation
for R(u,v,w) is developed by means of a simultaneous
scaling of friction (A~Q~'2-50) and temperature
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(B~0!2— ). The resulting Green’s function is Gauss-
ian (in terms of E). Finally, in Sec. VII the formula for
the decay rate is obtained by combining the (leading-
order) results from Secs. V and VI in a unified treatment.

The present analysis (re)establishes the microscopic-
model independence of Kramers’ stochastic process
(which in that sense is universal). Inter alia it also clarifies
(or, in other cases, circumvents) certain intricacies in-
volved in the microscopic-model formulation, such as
those concerning the systematic nature of corrections to
the leading result. An exhaustive account of the theory
will be available upon request [34).

II. THE SEPARATRIX: STABLE AND
UNSTABLE BARRIER MODES

Kramers’ process of Brownian motion in an externally
applied potential U(x) is uniquely defined by the
Fokker-Planck equation
JdP oP d

;——pgﬁ'(]( ) )u

18P
P+
PP+ o

where P(x,p,t) is the probability density to find the parti-
cle (with unit mass, for convenience) at position x with
momentum p at time ¢. In order to model an activated
rate process, the potential should have (at least) one local
minimum with an adjacent barrier. Typical model poten-
tials are the cubic U(x)=—1w}x*1+x/a) and the
quartic U(x)=—1wl}x*1—x2/a?). In general, near the
barrier peak U(x)= ——a)sz while near the potential
minimum U(x)=~ — U, + 1ag(x —xo)%

For zero temperature (2.1) reduces to the Liouville
equation corresponding to the deterministic dynamics
X =p,p=—2Ap—U’(x). In the harmonic barrier region
the separatrix & [12,17,35] for these dynamics is given by
p(x|8)=—(w,/k)x, where k is Kramers’ coefficient
(1.2). & is a repeller, i.e., the barrier motion is unstable in
a direction orthogonal to §. On the other hand, the bar-
rier motion is stable towards the attractor 7 [12], which
is given by p(x|T)=xw,x. Therefore, we introduce
coordinates

2.1)

N=x+p/w,,
(2.2)

§=x 4 /(01 )
with 0, =kw, and w,=w, /k, so that the barrier motion

along 7 (£) is unstable (stable). One finds 7=F;(7,{) and
§=F,(n,§), with

d d K?

an "ac " 2k

d
% " | 4K

90 _
at

In (3.3) FP is unambiguously defined with all operators
d/97 and 9/3¢ ordered to the left. Generally, with
K >0, the CGT (3.1)-(3.2) has the property of shifting
noise from the unstable to the stable degree of freedom.
With K =pBw3/4)A, the Q flow along 7 becomes deter-
ministic (in the harmonic barrier region). In that case

Fi(n,)=0m—U,(x)/0, ,
F2(n,§)=—w2§+Ul(x)/(01 N

2.3)

where Ua(x)-—wbx2+ U(x) is the anharmonic part of
the barrier potential. Transforming (2.1) from (x,p) to
(9,¢) yields

%————(FP) g<1~*21t>>+a—22<;0”1>>
+ 2 p,P)+ 2P, (2.4)
an 3 a2
where
D =2A/Bw3, Dy=—20/Bol, Dyp=21/Bw? .
(2.5)

Of course, since w0, =
given - by (2.5) s
(ﬂkk > 0 N DetD=0).

o?, the diffusion tensor D= {2, }
non-negative but  singular

III. THE CONSTRAINED
GAUSSIAN TRANSFORMATION

Let us now map the process P(7,§,t) onto Q(7,,?),
such that for the new process the component of the
diffusion tensor in the unstable direction n will be zero.
Generalizing earlier work (in the study of one-
dimensional unstable systems [32,33]), we introduce the
constrained Gaussian (integral) transformation (CGT)

omEn=N["dnf" dge K&
X 8(x% —x)P(n,6,t) . 3.1

For the present purpose K and N =(1/2«~)(K /7)"/* will
be time independent. The constraint §(X —x ) takes care
of conserving the dynamical significance of the potential
U,(x). Since, with ~=Lk+k™"), x=(n+k’¢)/2k~r,
(3.1) leads to

172

f @ dte —K(E-¢?

XP[7j+kHE—E),E 1] .

This CGT implies a Fokker-Planck operator transforma-
tion, such that if (2.4) is written as

om,E,1)=

(3.2)

oP Jd 0
at - an’ag’nag P > (33)
then
0
[
an Q . (3.4)
[
(3.4) yields
8Q__ 3 _9 o
3t 817(FIQ) ag(FzQH- 5 (D Q)
2
+=2 20,00+ 2-(Dp0) , (3.5)

919§ il
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where F, =F,(n,§) as defined in (2.3), and where
D=0, D;,=—2Ar/Bro} ,
Dy, =4Ar /Bt |

with
r=[1+(A/w, )] . (3.7)

The diffusion tensor D defined by (3.6) is indefinite but
non-singular (D, 20, DetD <0).

IV. DYNAMICAL PHASE-SPACE EXTENSION:
THE UNSTABLE-MODE ENERGY

The stochastic process (3.5), (3.6) is deterministic in the
unstable direction 7 in the harmonic barrier region.
Since this region suffices (apart from finite-barrier correc-
tions; see Appendix B) for the description of the escape
process in the moderate-to-strong-friction regime, the
Kramers-Smoluchovsky rate can be calculated from (3.5),
(3.6) by means of TST [31,34]. An elegant analysis unify-
ing this result with the small-friction regime will be given
in terms of an unstable-mode energy E (Grabert [28,29]).
Within the framework of Kramers’ Fokker-Planck equa-
tion (FPE) the definition of E is nontrivial. This problem
[9,30,31] will be tackled in the present section. Its solu-
tion requires the introduction of the concept of a dynami-
cal extension of phase space.

Let us embed the phase space (7,{) in a three-
dimensional space (¢,7,{). In this extended space we
define a process R(,7m,§,t), such that Q(7,§,t) is the
marginal distribution

om,6,0)= [ R(9,m,6,0)dd @.1)

in the subspace (7,§). The extension becomes unambigu-
ous upon imposing dynamics along . These dynamics
will be defined by the deterministic flow ¢=F(3,7,§),
with

Fo(9,1,60)=—w,9—Ul(x) /0, . 4.2)

In view of the subsequent rotation (4.4) in the (d¢,7)
plane, any diffusion along ¢ would add to the flow along
the unstable coordinate u (and its momentum v =),
thereby hampering TST. In addition, as will be shown in
Sec. V, with the noiseless flow (4.2) the extended process
R has the correct Maxwell-Boltzmann equilibrium prop-

erties. Therefore, the extended version of (3.5), (3.6)
reads
%I;=—5%-(FOR)——£;(F,R)—5%(F2R)
+a—2(2D12R )+ »ai(DzzR) ) 4.3)
9m dg a¢?
Now let
u=in—9, v=1lo|n+d), w={+3/k*. (4.4)

Transforming (4.3) from (¢, 7,§) to (u,v,w) gives

OR __OR _ o 5 . 7OR 3
3 v T [opu—U,(x)] 3 3w (F,R)
3? 3?2
+ 2D, R)+
du dw (2D, R) dv dw (2D, R)
82
+-2_(p,R), 45
W (4.5)
with x =(u +%K2w ) /K, and
Fw(u,v,w)-———wzw——i\(u—v/wl) , (4.6)
K
D, = —%KZwa, D,= —}K3a)bwa ,

(4.7)
D, =4Ar /BK(D% .

Note that, for fixed w, the dynamics in the (u,v) plane is
conservative. In particular, in the harmonic barrier re-
gion this flow (4 =v, 1 =w?lu) decouples from the envi-
ronmental variable w and is unstable. The unstable-mode
energy [28,31] is now defined as

E=1l(—olu?)+k’+<U,(x) , 4.8)

so that for the deterministic part of the dynamics
4=0E/dv and ©»=—0E/du. Note that JE/dw
=1U, (x).

V. THE EQUILIBRIUM DISTRIBUTION AND
BARRIER RECROSSINGS: TRANSITION-STATE
THEORY OF THE KRAMERS-SMOLUCHOVSKY RATE

Let us rewrite (4.5 -(4.7) in terms of (u,E,w)
[4,7-10,36,37]. The result reads
oR OR o , 1 4, , aJ
=S S UL () 1
o~ You Tow 2° VaXgE 5.1
where the current J is given by
1 JR 1 dR
J=—2KkDy,—+ R+——
2 M e gy TR T 8
21 1 OR
+—(u—v/w) | R+—— |, (5.2)
pe @ Br OE

with B, =®,/D,,, and By =B/k>~, and where R (u,E,w)
is still normalized as f du f dv f dw R =1. The equilibri-
um distribution is defined by (i) 9dR./3r=0, (i)
OR ., /0u =0, and (iii) J,,=0. The process (5.1), (5.2)
unambiguously yields

~BgE—B,w?/2

R (E,w)=Ne (5.3)

The value of N corresponding to normalization in the lo-
cal (harmonic) minimum of the potential U(x) is found
by noting that the marginal distribution Q,(7,5), result-
ing from (5.3) by means of (4.1), should be identical to
Qeq(ﬁ,f ), resulting from the equilibrium distribution
P (x,p)=Noexp(—BE,) of Kramers’ FPE (2.1) by
means of (3.1). Note that E #EP, the latter representing
the particle energy. For P, one has N,
=(Bwy/2m)exp(—BU,). The analysis most easily
proceeds in the (harmonic) barrier region (see Appendix
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A). The result reads

172
LN L (5.4)
2r (2w ' '
By rescaling E /k’~—E one can make Bz =p. In that

case (which will be implicit in Sec. VI), the normalization
constant of the marginal distribution Req(E ), of course,
reads N =(kBwy/2m)exp(—BU, ).

Recalling the remarks made in Sec. IV, let us now cal-
culate the decay rate by means of (5.3) and (5.4). In ex-
tended phase space (EPS) the decay rate is given by [4,34]

p=_‘éa?ffwdu J7av [T dwRwyw), 65
where R (u,v,w) is the quasiequilibrium distribution nor-

malized according to (5.4). Using (4.5) for dR /9t in (5.5),
one finds

r=["dv " dwvR(0,0,w). (5.6)
This result hinges on the absence in (4.5) of direct
diffusion along the unstable degrees of freedom (u,v).
Since the (u,v) flow decouples from the environmental
degree of freedom w in the harmonic barrier region, this
feature also implies the absence of barrier recrossings
(apart from finite-barrier corrections ~1/BU,; see Ap-
pendix B). Hence, one has R(0,v,w)=6(v)R(E,w)
where O(v) is the unit step function, so that (5.6) becomes

r=["dE [~ dwR(Ew). (5.7)

Using (5.3) and (5.4) one thus finds the escape rate (1.1)
with the Kramers-Smoluchovsky value v, =kwy/27 for
the attempt rate. This establishes the validity of the EPS
version of TST in the regime of moderate-to-strong
damping.

VI. UNSTABLE-MODE ENERGY DIFFUSION

In Sec. V we have met the challenge (posed by the
moderate-to-strong-damping theory of Pollak [23]) of for-
mulating a low-dimensional Fokker-Planck version of
multidimensional TST. That is, by the combination of
CGT and EPS the (stochastic) dynamics of recrossings
have been projected onto the equilibrium statistics.

For very weak damping, deviations from exact equilib-
rium (depletion effects) invalidate the analysis of Sec. V.
However, in (5.1) direct diffusion along the unstable E
axis is absent in the harmonic barrier region for all values
of the friction. This feature implies the possibility
of a unified treatment like that of Grabert [28]. In
what follows we present a systematic simultaneous
small-friction—low-temperature  expansion for the
(quasi)equilibrium state of (5.1).

Depletion effects are important if 2A8I, <<1. In order
to cover all values of 2ABI, in a single expansion, let
A—AQ 712 and B—BOQY2, with Q— . As a conse-
quence, to leading order in Q one has B,—p,Q and
D,,—D,, Q" !. In addition, let both w—wQ~!/? and
E /k*»—EQ ™12 (so that B =p for all values of the fric-
tion). Upon introducing € into (5.1) [with dR /9t=0,
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and expanding k~Q°, ~~Q°, U,(x)~Q° v(u, E,w)~Q°,

as well as R=RO4+Q 12RM4 - IR@ 4 ... 4¢
power series in Q'“ 2), the leading terms ( ~Q°) yield
JR aJ
3 "8 T2 U 6.1
ar Jdw ‘Zl( ) (6.1)
with
4\ OR
J=w, |wR + 2 2%
Bwb aw l
1 3R

+2A[elT)—eT) /0y ] |[R+ =7

B 3E (6.2)

where the fictitious time 7 (in place of u) is defined by the
nonlinear mapping u =«(7), with a=&(7), (1)
=4[—2U(7)]"% and U(r)=Ul(«(7)). To make sure,
U, (T)=U:(«(7)). Note that o(7)=v"u), that
vOu)dR /8u =0R /37, and that {a=o,06=—U'(x)}
represents the Hamiltonian motion in the original poten-
tial at the barrier peak energy (E=0). The trajectory
{ee(T),e(7)] is a “bounce”-type configuration [15-17] in
EPS. For the cubic potential one finds «(7)
= —a /cosh’( to,7). The quartic potential yields e(7)
= —a /cosh(w,7).

The result (6.1),(6.2) is a two-dimensional /inear FPE
for R (E,w,7) with 7-dependent coefficients [14]. Hence,
the fundamental solution is a Gaussian. The equations of
motion for its first moments &(7)=(E ) and W(7)=(w )
read
E=LU (W, W=—0,W—2Ma—0v/w,) . (6.3)

Note that the change in energy is due to the work done
by the environmental mode w [31]. For the variances

opp(1)=((E—6)*), o,6(r)=((w—WNE —§)), and
0 4 (7)={(w —W)?) one obtains
d'EE=—ﬂ)b(Llla(T) wE_—ZZ\'_'(d ("/wb) y
Wy
. 2A
Gpp=—0, |our— Bo, —(ee—/wy)
1 k
—= ’ — |, 4
2wb‘ll (1) |o B (6.4)
. 4\
aww—_zwb olww_E;E—
With the environment in equilibrium at 7= — o, one has

Oy =4\/Baw} for all 7. Hence, comparison of (6.4) and

(6.3), noting that o,z(—o)=W(—w)=0, yields
0 ,e(T)=—W(7)/B and
opp(T)=—2A6(7)/B, (6.5)

with A6(7)=6(1)—E(— ). It is easily shown that the
energy loss per round trip resulting from (6.3) exactly
amounts to AG( 0 )=2AI, [34].

For calculation of the escape rate (5.5) one only needs
the marginal distribution R (E,7)= [ R(E,w,7)dw. The
marginal Green’s function reads [8,9]
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GE|E")=[47A6(7)]"12

[E—E'—A&(1))?
4A8(7) ’

Xexp | —B (6.6)
and obeys detailed balance, ie., G(E|E')R.(E’)
=G(E'IE)Req(E), with R (E)=Ngexp(—BE) being
the equilibrium distribution in EPS at B; =p, according
to Sec. V.

VII. GENERALIZED TRANSITION-STATE THEORY

The Green’s function (6.6) allows the problem to be
rewritten in its equivalent integral form. In particular,
one has

R(E, @)= [ " W(E|E'R(E',— ©)dE’

—

(7.1

where the transition probability density W(E|E’)
=G _(E|E’). The TST version of (7.1) follows by letting
R(E,— ©)=O6O(—E)R(E, »), so that

R(E)=[° W(E|E"R(E"ME", (7.2

where R(E)=R(E, ) is the quasiequilibrium distribu-
tion subject to the boundary conditions R(E)— R (E) if
E— — o, and R(E)—0 if E— «. This Fredholm equa-
tion can be solved by the Wiener-Hopf method [38] (see
also Ref. [9]), and according to Mel’'nikov and Meshkov
[8] the result for the decay rate ©= f o R(E)dE is given
by (1.1) with

K

21

exp

Va

wa dy zln(l_e_5(1+y2)/4) ,
TY-o 14y

(7.3)
where e=PBA&E(0) with A6(w)=2AI,. If e<<1,
(7.3) reduces to Kramers’ weak-friction result

v (A—0) =2ABI,wy/27 as [8] v,(e <<1)=(ew, /2m)[1
—0.82¢!72]. On the other hand, if € >>1, (7.3) reduces to
Kramers’ moderate-to-strong-friction result v, =kw,/2m
as v, (e>>1)=(kwy/ 2m)[1—1.13e 712 ~¢/4],

VIII. FINAL REMARKS

The present article meets the challenge [9,30,31] of
solving Kramers’ Fokker-Planck equation for activated
rate processes (escape over a potential-energy barrier [4])
in a unified treatment (i.e., including the frictional turn-
over region) without recourse to any microscopic model
(as in Refs. [28,29]) or associated Langevin equations (as
in Ref. [31]). The unified FPE theory hinges on the
definition of the unstable-mode energy E [28], which al-
lows for a generalized version of (low-dimensional)
transition-state theory. The definition of E within the
FPE context requires some new theoretical concepts.
The analysis proceeds as follows.

First (Sec. II), one investigates the harmonic barrier dy-
namics, in Kramers’ FPE phase space (x,p), in order to
identify the unstable (and stable) barrier mode 7 (and §),
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and to transform to the rotated coordinate system (7,§).

Second (Sec. III), one defines a constrained Gaussian
integral transformation in order to shift the noise from
the unstable o the stable degree of freedom. As a conse-
quence, the barrier dynamics in the unstable direction be-
comes deterministic. The constraint takes care of
preserving the dynamical significance of the potential
U(x).

Third (Sec. IV), one extends the two-dimensional phase
space (1,§) in a direction ¢. The stochastic process in
this extended phase space is uniquely determined by im-
posing dynamics along ¢, such that it (i) allows for the
definition of E and (ii) allows for TST in EPS (Secs. V and
VII. The present theory yields the exact Boltzmann dis-
tribution Req(E ) without further ado (in lieu of| e.g., Ref.
(31).

Fourth (Sec. VI), one performs a systematic small-
friction—low-temperature expansion in EPS. The irre-
ducible part of this expansion is the “linear noise approx-
imation” [14] in E. The ensuing Gaussian transition
probability W(E|E’) obeys detailed balance with respect
to R (E) and defines a generalized TST integral equation
like that of Mel’'nikov and Meshkov [8].

The final result for the escape rate I' is given by (1.1)
with (7.3) for the attempt rate v,. The present unified
treatment (Sec. VII) is due to the possibility of TST in
EPS for both very weak and moderate-to-strong values of
the coupling to the environment. In particular, it is the
notion of EPS (Sec. IV) which allows the definition of the
unstable-mode energy E, while it is the concept of CGT
(Sec. III) which is crucial for allowing TST in terms of E.

The rate (7.3) differs in a subtle but significant manner
from the results of Mel'nikov and Meshkov (8], and of
Grabert and co-workers [28,29] and Graham [31]. The
present theory proceeds in terms of E (rather than the
particle energy E, as in Ref. [8]), which allows for the
unified treatment of depletion and barrier-recrossing
effects. Therefore, in Ref. [8] the Kramers-Smoluchovsky
coefficient k in (7.3) could only be introduced as an ad hoc
multiplication factor (see also Refs. [9,20]). On the other
hand, both the microscopic theory of Grabert and co-
workers [28,29] and the theory of Graham based on the
associated Langevin equation [31] do involve E. Howev-
er, from the present systematic expansion (Sec. VI) it fol-
lows that the relative energy loss ¢ is that of Ref. [8] rath-
er than that of Refs. [28,29,31].

The present macroscopic theory (re)establishes the in-
dependence of the microscopic details of Kramers’ sto-
chastic process for activated rate processes. An exhaus-
tive account will be available upon request [34].
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APPENDIX A: NORMALIZATION OF THE EXTENDED
EQUILIBRIUM DISTRIBUTION

Let the one-particle equilibrium distribution
P (x,p)=Nyexp(—BE,) of (2.1) be normalized so that
No—(BwO/Zﬂ')exp( —BU,). In the harmonic barrier re-
gion E,=(p 2—wix?). Note that the Jacobian of the
transformatlon (2.2) equals |3(x,p)/3(n,&)| =w, /2~, and
substitute the ensuing P, (n,§) into the CGT (3.1). The

result reads

Qeq(m,6)=Ngexp( (A1)

_%Kn"?z_Kn"?g) ’

where K, =—PBAwy/~, K, =2Bxawk /~, and
No=(kawy, /2#)Ny.

On the other hand, by (53) R (Ew)
=Nexp(—BgE —1B,,w?). In the harmonic barner re-

gion E=%(v2—colu2) by (4.8). Recall that R (E,w) is
normalized as [du [dv [dwR=1, and note that
the Jacobian of the transformation (4.4) equals
|9(u,v,w)/3(8,m,&)| =@, /2. Substituting the ensuing re-
sult for R (d,7,8) into the EPS condition (4.1), and
comparing the upshot for Q,(7,&) with (A1), one finds

N/Ny=(wy /2mhe*s)'"? . (A2)

Use of the above value for Ny, and of the definitions of
B and B, below (5.2), yields (5.4). Finite-barrier correc-
tions in the normalization, occurring beyond the above
harmonic-well approximation, will be friction indepen-
dent and are, therefore, not considered here (nor in Ap-
pendix B).

APPENDIX B: BEYOND TRANSITION-STATE THEORY:
FINITE-BARRIER CORRECTIONS

The validity of the EPS version of TST hinges on the
fact that the unstable mode (u,v) decouples from the en-
vironmental degree of freedom (w) in the harmonic bar-
rier region, i.e., with U,(x)=0. In this Appendix we
briefly investigate the corrections in I" due to U,(x)#O0.
Let us therefore following Kramers [4,21] set

R=Q(u,n,w)R 4(E,w) , (B1)

where R, is given by (5.3), with E as defined in (4.8).

Substitution of (B1) into (4.3), and rewriting the resulting

equation for @ in terms of u, 34=—u+v/w,, and
x=(u+1k*w)/k~, yields

0=F %—‘Q+:7v g§+:7 90 g, aizgzx . (B2
with D, = —A/Bw}, and

Fo(u,8,x)= —03+ ro,(x —2u)+AU,(x)/0?} ,

F(u,x )=+ U (x) /0, , (B3)

Flu,x)=—w,(u+3)/r .

Note that @=1 amounts to full equilibrium. On the
other hand, if U,(x) is zero, (B2) and (B3) allow for a
solution Q(&#) with 39Q/93=0, i.e., @=0O(3). This
corresponds to the quasiequilibrium state pertinent to
TST at the barrier peak (u =0). Including the anhar-
monic barrier terms, (B2) and (B3) still allow for a solu-
tion with Q(— «)=0 and Q(»)=1. In that case, how-
ever, recrossing effects will show up in terms of the small
parameter (1/B8U, )%

Upon introducing (B1) into (5.6), it is convenient to
write the decay rate in terms of =0@ /3¢ by means of a

partial integration. In addition, let «=(Bw}/Ar)""?u
and == (Bwj ~/A)"?*kx and define
Llhez)= 7 d3e ™ p(8,0,2) (B4)

so that I" becomes an integral over k and .= of /(k,0,.=).
Note that ,/(0,e,2)=1. Differentiating (B2) with respect
to 4, one finds an equation for /(k, z,z).

Consider the cubic potential U,(x)=—L1olx3/a, with
U,=20w}a*/27. In that case, the small parameter
¢=(L/6Kk°+%w0,BU,)'"? and with £=(Ar/Bw})" 4k the
expansion (! 2 1;m,n 20)

LA0,2)=1+ 3¢, Alasn (BS)

Imn

leads to (1.1) with

214a,/24+0(4%)],

L =2—
(B6)
a,= ﬁkz( 1—k2)?
F(A /o) (€300 FCoook? + 300k + -+ ) .

Hence, to leading order in £ it suffices to determine / for
£=0. In that case one has

ikz"f é e ( 2k )aa + O + auar
(B7)

which can be solved systematically in powers of £ with
the coefficients being polynomials in « and =. The final
result for a, reads
1 kKA (1—k*)(10+41k>+10x*)
24 (1+2«%)(2+k?)
For the gquartic potential U,(x)=lw}x*/a? with
U,=lwja®. In that case, £=(A/4x*+’w,BU,)""? and
“()ue/Bwb )1/24%k, and the result reads

a,=—3*(1-K?) . (B9)

a,=— (B8)

These results agree with those obtained using methods
put forward recently by Pollak and Talkner [39], and by
Mel’nikov [20]. In Ref. [20], however, only the quartic
potential was treated in extenso and a factor 1/8a in
Mel’'nikov’s formula (167) should be corrected into a /8.
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